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Once a factor analyst has determined a factor space for a complex of
variables he usually desires a basis for interpreting the factor space.
Traditionally the basis for interpreting a factor space has been made
relative to either orthogonal (uncorrelates) factor u;ns or ohligng
(correlated) factor axes. That is to sny, the "loadines' of the initial
factor loading matrix are transformed through the use of cither an
orthogonal or oblique transformation procedure,

Any oblique transformation solution encompasses three matrices. The
general names given to these three matrices are the pattern matrix, the
structure matrix and the factor intercorrclation matrix. The entries of
a structure matrix represent the perpendicular projections of the variable
vectors onto the oblique factor axes and with an appronriate scaling are by
rows the correlations of the variables with the factors., ‘the eutries of a
pattern matrix represent the parallel projections of the variulle veclors
onto the oblique factor axes and are by rows the stawiirdiz:d rorrossion
weights of a regression equation.describing each of tne onuzrved wnarviables
in terms of the correlated factors. The entries of the factor
intercorrelation matrix are just the correlstions batuezan the factors.
Although most papers on oblique transformations do not Jeal specifically
with orthogonal factor axes, one may regard an orthogonal transformation
solution within the more geperal framework of obliaque solulions. In the
general oblique framework the orthogonal transiormatioa solutica nicdit be
thought of as a special solution in which tii: factor wrtore rr.lition
matrix is an identity matrix. When the factors are uncorrelabod the
parallel projections and perpendicular projections of the vuriable vectors
are identical, thereby resulting in a structure matrix that is didentical

to a pattern matrix.
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There have been in the past two schools of thought pertaining to
the type of interpretation that should be made for an oblique solution.
One mode of thought was based upon the work of Louis Thurstone (1947)
while the other was based upon the work of Karl Holzinser (ﬁe‘aié'or
and Harman, 1941). The Thurstone-lolzinger differences stem,
philosophically from the idea of invariance and geoncetrically fron the
definitions of factor axes used in obtaining the Ffinal solution
matrices, which implicitly determine whether it is the pattern or
structure matrix that should be used for the final interpretation. The
Thurstone (1947) school of thought bases the final interpretation of
the oblique transformation on a structure matrix while the lolzinger
school (Holzinger and Harman, 1941) uses a pattern matrix for the final
interpretation.

Holzinger defined his solutions using primary vectors, those
vectors formed by the interscction of hyperplanes. Thus, lolzinger's
solution matrices for interpretation were the primary pattern and the
primary intercorrelation matrices. The load;nxs of the priviry pattern
matrix are defined geometrically as the paraliel projections of tue
variable vectors onto the unit length primary wecfors.

Thurstone (1947) defined his solutions using refcrence vectors,
those vectors defined as normals to hyperplanzs. Thursion: was
concerned with the perpendicular projections of the wariable vectors
onto the unit length reference vectors. Although Thurstone was
interested in the reference structure matrix, it is interesting to note
that he usually reported the primary intercorrelation matrix along with'

the reference intercorrelation matrix.



Typically a solution matrix is desired which will have scientific
meaning and interpretability. Scientific meaning and interpretability
are facilitated when some of the c¢ntries of the solution matrix are very
high and the remaining entries are Zero or near zero, A zervo entry in a
solution matrix may be thought of as a vanishing projection, thusg the
objective in obtaining a solution facilitating sciuntific interncotation
is one of mazimizing the number of vanishing projections. (This concept

"simple structure", however this term is

is frequently referred to as
somewhat misleading and will not be used in this paper.) Either the
number of vanishing perpendicular projections or the number of vanishing
parallel projections must be maximized, inas.Juch as both types of
projections cannot generally Be maximized within the context of a single
(either primary or refcrence) system. That is te say, the zero
"loadings" in the pattern and the structure matrix cannot both be
maximized within a single system. T mntrix in wliich the vanishing
projections are to be maximizad is dependent upon the interpretation
that one wishes to make from the final solution. If the intcrsretation
is to be made in terms of the correlations between the variavles and

the factors then the vanishing perpendicular projecticns of the

variable vectors onto the unit reference vectors, the near-zero

entries of the reference structure matrix, should be maximized. If one
wishes to treat the observed variables as dependent variahles and the
factors as independent variables, then the vanishine pnarallel
projections of the variable vectors onto the unit primary vectors, the
near-zero entries of the primary pattern matrix, should be maximized.

In the past, with several exceptions, most attempts to develop

analytic oblique procedures have followed the Thurstonian mode of
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thought, maximizing the vanishing perpendicuiar projections of the
variable vectors onto the unit reference vectors. The reason for this
is not particularly clear, but elther the Thurstonian anproach is 1-ss
complex than the liolzinger approach or factor analysté find the
reference structure matrix an easier matrix to internret, In kaening
with tradition this paper will follow the Thurstonian model, howeiver it
should bece.:. - .rent to the reader, as a result of reading this paner,
that the cl.-i¢ :” model in this paper was somewhat arbitrary as both
types of soiur' ., may be computed with ease using the wow transformation
procedure developid and presented herein.

The objeutive of this paper is to acquaint the reader with certain
aspects of the methodology, properties and nature of the general
obliquimax transfuruation (Hlofmann, 1971). *or pedagosical and illustrative
purposes one of Thurstone's methods of datermining oblique traasforiations
is presented and then modified to produce a siwuplified version of the
obliquimax which is referred to as the simplified obliquimax.

The simplified obliquimax is unique in the sense that it is a
semi~subjective transformation procedure that depends neither on zn eblique
analytic simple structure criterion nor graphical techniques to
determine the oblique transformaticn solution. It provides a
conceptually simple yet reliable oblique transformation prees~dure for

X /

most sets of data. However, it is not <n's.’: !

[y
B

Lo be « practica
working model. It is the general obliquimax that is the pr cgical
model,

This paper is composed of three sections. In the first scction,
(Section I), Thurstone's (1947) method of determining subjective oblique

transformations is discussed within the context of tuwo-dimensional
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sections. Although nothing in the first section is new, it defines and
describes geometrically the matrices and terminology traditionally used
in the Thurstonian type oblique transformations. The first section also
establishes an algebraic model for determining subjective nblique'
transformation solutions through the use of an iterative nethod.

In the second section, (Section II), the general obliquimax is
briefly discussed with respect to the matrix equations defining an
oblique solution. Special emphasis is placed on the matrices of
direction numbers and solution matrices expressed within the metric of
the original factor solution. Several important similarities between
the Thurstone and Holzinger solutions are noted. This section does not
provide a detailed discussion of the general obliquimax inasmuch as it
is included only to provide a basic theoretical rationale for the
development of the simplified obliquimax in the third section of the
paper.

In the third and final section, (Section III), of this paper the
simplified obliquimax is presented. Thurstone's initial matrix of
direction numbers is def}ned as a symmetric matrix a pricr»i without the
use of planar plots. All subsequent iterative stage solution matrices
are expressed within the metric of the original factor solution and
defined in terms of an orthogonal transformayion of the original
factor solution and exponential powers of the initial <rumetric matrix
of direction numbers. Conjectures are made about certain ncw aspects
of the geometry of oblique solutions within the f[ramcework of the
direction numbers of the simplified obliquimax.

In Sections I and III a set of illustrative data is used to

‘clarify the discussion. Iterative solutions for this data set are
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determined by Thurstone's method in Section I and by the simplified
obliquimax in Section III.

Aside from acquainting the reader with the gencral obliquimax, this
paper should clarify and extend certain theoretical asrects of HS]iqUG
solutions in general.

Section I
Thurstone's Method Of Determining Oblique Transformation
Solutions By Two Dimensional Sections:

As previously mentioned Thurstone sought to define an oblique
solution with respect to perpendicular projections onto the reference
vectors, thus his solution matrix of interest was the reference
structure matri#. Thurstone (1947) presented several methods of
oblique transformation: plotting the mormalized variable vectors onto a
hyper-sphere, two dimensional sections and by three dimensional sections.
His first method was quite subjective while his other two methods were
primarily analytic and algebraically the principle involved in both
methods is the same. In this section his algebraic principles will be
used and discussed within the context of two-~dimensional sections.
(Although there are numerous modifications and rewordings this section
is taken directly from Thurstone (1947, p. 194-224), Reference to
Thurstone (1947) is implicit throughout this section.)

Assume some factor loading matrix, F, defining the perpendicular
projections of n variable vectors onto » mutually orthogonal factor
axes. The » axes are arbitrarily orthogonal axzes as determincd by the
initial factoring method. For illustrative purposes Thurstone's
technique will be discussed within the framework of his classic box

problem (Thurstone, 1947, pp. 140-144). The centroid solution for the



box problem is reported in Table 1.

(n = 20) and (r

—
—4

3).

For this particular set of data

Table 1

Centroid Solution® of Dox Problcnm

Matrix F

B 2. WS e W 4 T Tt st Yot

45 Fo o
41 B C1
1 .659 ~-.736 .138
2 . 725 .180 -.656
3 . 665 .537 .500
4 . 869 -.209 -.443
5 . 834 .182 .508
6 . 836 .519 .152
7 . 856 -.452 -.269
8 . 848 -.426 .320
9 .861 416 -.299
10 . 880 -.341 ~.354
11 . 889 ~-.147 .436
12 .875 .485 -.093
13 .667 -.725 .109
14 . 717 246 -. 619
15 .634 .501 .522
16 . 936 .257 165
17 . 966 -.239 -.083
18 . 625 -.720 L1106
19 .702 112 -.050
20 .664 .536 L4h83
*Thurstone, 1947, p. 194,
The » axes may be denoted as Ao, E,, and C,. These arbitrary axes

are regarded as fixed in position. The problem is to select by u

-

successive approximations the unit reference vectors, I,y and (

i us

such that the number of variable vectors with zero perpendicular
projections onto these unit reference vectors is a maximum.

In starting the transformation procedure the » unit reference
vectors are assumed to be mutually orthogonal and collinear with the »

arbitrary orthogonal axes. That is to say, AZ is orthogonal to BZ and

8
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01 and it is collinear with A,. This may be observed in Tigures 1, 2 and
3 which represent the planar plottings of the variable points with
respect to.the initial factor axes as reported in Table 1 (Fignre 1 being

the points as defined by the first two columns of Table 1). Note that

Ao and Al are the same axis.
Figure 1
Planar Plots of Variable Vector Termini

With Respect to Unit Reference Vectors
41 and BZ’ Projected Onto Plane A1P1

1 " 1 1 ' 1 [} ] $ +

109 =8 =7 =6 =5 =4 =3 =2 =17

-1.0J

The locations of the reference vectors may be defined with respect

to the fixed orthogonal frame through the use of the matrix of

|

direction cosines V,,» The subscript of " refers to ti: .-th given

positions of the reference vectors (the iterative stage). Vhen i is
unity the reference vectors are collinear with the fixed orthngonal

frame and V,; is an identity matrix. The coluwns of VZ give tae
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airection cosines of the initial locations (I) of the unit reference
vectors with respect to the fixed orthogonal frame.* TFor any matrix of

directicn cosines, Vﬁ, the entry Vi

J

of inclination between the unit reference vector j and the original

refers to the cosine of the angle

fixed axis <.

The points in Figure 1 show the configuration of variabie vector
termini as they would appear when projected orthogonally onto the planc
of AlBZ‘ If vector AZ is transformed in the plane AZBZ to the position
of A%, it will determine a plane (of hyperplane if » > 3) which will
intersect the plane AZBZ in the line which is marked Bé—primary. The
vectors associa;gd with 1, 13 and 18 will have near-zero projections
(vanishing projectigns) on the vector Aé. It is important to note that
the Bé-primary passes through the group of points 1, 13 and 18.
Similarly the given position of B; can be transformed in the AZBZ plane
to Bé and its associated plane will intersect the plane AZBZ in the
line marked Aé—primary. The Aé—primary passes through the group of
points 6, 9 and 12 and their variable vectors have vanishing projections
on Bj.

In transforming AZ énd Bl to the positions Aé and Bé respectively
new positions have been estimated graphically for Ehe reference vectors
A and B such that the number of variable vectors having vanishing
projections has increased. - It is impcrtant Eo note here thut AZ and BZ
are in part bases and altitudes of right triangles whose hypotenuses

are A!, Bé, Aé-primary and Bé—primary. The vectors Aé, Bé, Aé-primary

*The initial factor loading matrix F is assumed to represent the .
first iterative stage of Thurstone's solution. Technically # should be
subscripted as Fl’ however for convenience the subscript I is omitted.

10
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and Bé—primary are not of unit length. The prime is used to signify that
Aé and Bé are ''long reference vectors" and that Aé—primary and Bg-primary
are "long primary vectors'.

The geometric discussion in this section is not quite the same as
that presented by Thurstone. It is hoped that by including the long
primary vectors as well as the long reference vectors some of the
geometric similarities between the Tuurstone and Pnlzinger solutions
will become evident. Technically a reference vector is orthogonal to a
hyperplane of (r - 1) dimensions. In any r-dimensional space there are
r hyperplanes of (» -~ 1) dimensions, and therefore r reference vectors.
The intersection of (¥ - 1) hyperplanes defines a primary vector,
therefore in any r-dimensional space there are » primary vectors. The
vectors drawn orthogonal to a hyperplane will ﬁecessarily be orthogonal
to any vectors contained within the hyperplane, thereby implying that
each primary vector must be orthogonal to (r - 1) reference vectors.
Therefore each primary vector is correlated with only one reference
vector. Orthogonal to the one hyperplane not containing the primary
vector is that reference vector. Within the context of this paper each
reference vector is referred to by a subscripted Roman letter. The
Roman letter may be thougbt of as representing the hyperplane to which
the reference vector is orthogonal. Each long primary vector is .
referred to by a subscripted Roman letter. The Roman letter associated
with the long primary vector may be thought of as representing the
hyperplane which does not contain the primary vector. Thus for the

!

illustrative example long primary A2 is orthogonal to all long reference

vectors with the exception of long reference vector A}. This discussion

11
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may be generalized to any number of dimensions* and will be presented
algebraically in Sections II and III. At this point we only wish to .
call the reader's attention to the long primaries in the plotted figures
and to note that they are the Holzinger (llvlzinger and Harman, 1941)
long primaries.

The coordinates of the termini of Aé, Bl, Al-primary and 3!-nrimary
9 ‘

-~ ™

can be defined with respect to the fixed orthogonal axes A and !

or with respect to Al’ Bl and 01’ Only the coordinates of the long
reference vectors will be discussed in this section. The termini of the

and B..

long reference vectors Aé and Bé are linear combinations of Al 7

Specifically:.

Aé = l.OOAl + .9081;

Bé = .SOAJ - l.OOBl.

The coordinates of the terminus of Aé with respect to Az and Bl are
(1.00, .90) and the coordinates of Bé are (.50, -1.00). The use of Ao

1

Thurstone's methodology. For subsequent iterations the role of Ao as

and A, may be somewhat perplexing to the factor analyst unfamiliar with

opposed to the role of the previous position of the reference vector,
Au-l which is Aj for the first iterative stage, will becowne much clearer.
In Figure 2 the first and third columns of F have been plotted.

The vector 01 has been transformed to Cé such that A!-primary passes
. &

through the group of points 8, 11 and 18. The variable vectors
associated with these points will have vanishing projection.; on the long

reference vector Cé. The coordinates of the tewvminus of "] with respect

to 4, and ¢, are (.40, =1.00).

1 1

I = -
02 .4OA1 1.0001

*When » < 4 the hyperplanes become planes.

12



Figure 2

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
Al and CZ’ Projected Onto Plane ...
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Note that Al is not transformed in the Alcl plane. The axis AZ in the

AlCl plane represents the projection of long reference vector Aé onto

the plane.
In Figure 3 the second and third columns of * have been plotted.

In the BlCl plane the axes Al and Bl are not transformed, thus, in this

plane BZ becomes long.reference vector Bé and CZ becomes long reference

vector 02. The axes Bl and Cl represent the projections of long

reference vectors Bé and C!, respectively, onto the 22C1 plane.
Although Thurstone has described the transformation process in
two-dimensional sections the long reference vectors are theoretically

linear combinations of all three of the initial reference vectors. They

are also a linear combination of all three of the original axes.
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Figure 3

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
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The equations for Aé, Bé and Cé are correctly expressed as:

! = .

Ag l.OOAZ + .9031 + 0.0 CZ’
! t—1 L d .

BZ .SOAZ l.OOBZ + 0.0 Cz,
s -

(Thurstone, 1947, pp. 1977198)

The coordinates of the termini of the new long reference vectors.
(2) with respect to the previous unit length refervence vectors (I) are
referred to as the direction numbers of the reference vectors with
respect to the previous reference vectors. The matrix of such direction
numbers will be referred to as Smu’ where the subscript u refers to the
reference vectors of the present iterative stage and the subscript m

refers to the previous iterative stage (m = y - 1). The matrix of such

14 '



direction numbers for the second iterative stage of the illustrative
example is reported in Table 2.
Table 2
Direction Numbers of Second Iterative étagc

Reference Vactors With Respect To Previous
Iterative Reference Vectors® -~ Matrix £

C A
! 4 !
AZ BZ 03
Al 1.000 0.500 0.400
Bl 0.900 -1.000 0.000
Cl 0.000 0.000 -1.000

%It is assumed that F represents the

first iterative stage. Thurstone,
1947, p. 198

The entries of Sﬁu by column are the coordinates of the reference

vectors with respect to the reference vectors of the previous stage.

A second matrix of direction numbers is used by Thurstone. The
second matrix, Lu’ represents by'columns the coordinates of the ternini
of the reference vectors of the y-th iterative stage with respect to the
axes of the fixed orthogonal frame. The matrix Lu is the product of the

previous matrix of direction cosines, V}, post-multiplied by the present

n

matrix of direction numbers, L of the refereuce vectors with respect

to the m—th set of reference vectors.

Lu = Vﬁﬁﬁu S [1]
For the second iterative stage Vl is an didentity matrix therefore
LZ is identical to 812, however this identity will not hold for

subsequent iterative stages.
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As previously noted the primes on the new reference vectors
distinguish the long reference vectors from unit length reference
vectors., The length of the long referencz vectors can be determined
through an r-dimensional extension of the Pythaqorean theorem:  the sum
of the squared lengths of the legs of a right triungle is cqual to the
squared length of the hypotenuse. (/ithin the present framewérk the
length of a long reference vector is determined with respect to the
fixed orthogonal frame. Each coordinate of the terminus of a reference
vector is analogous to the length of one of the legs of a right triangle
whose hypotenuse is thc long reference vector. The direction numbers
of interest for @etermining the lengths of the long reference vectors -
are the column entries of Lu‘ The squared length of long reference
vector Aé is just the sum of the squared entries of the first column of
L2 (For this particular iterative stage L2 = 312 and the column sums of
squares may be computed directly from S99 Table 2.).

Let the non~zero entries of the positive definite diagonal matrix
Di represent the squared lengths of the long refercnce vectors determined
by the u~th iteration. The equation for computing Di is:

Di = diagonal (L}L,). | (2]

For the u~th iterative stage the value dii répresents the length of
the 7¢~th long reference vector. For the illustrative example the

diagonal entries of D2 are -reported in Table 3. Post-multiplving Lu by

-1 . .
Du will rescale the metric of the direction numbers such that the

column sums of squares will be unity for the matrix product L.h:l.

Within a trigonometric framework the rescaling of the columns of L, is

tantamount to dividing the length of each leg of a right triangle by its

hypotenuse, thereby converting the direction numbers to direction cosines.

16
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Table 3

Lengths of the Long Reference Vectors Determined
in the Second Iterative Stage* ~ Matrix D2

—

4 5 ¢y
1.345 0.000  0.000
0.000 1.118 0.000
0.000 0.000 0.929

*Thurstone, 1947, p. 198
The lengths of the long reference vectors have not been changed. The
metric of the long reference vectors has been changed. 1In changing the
metric of the coordinates of the Eermini of the reference vectors each
coordinate becomes the cosine of the angle of inclination between a
particular reference vector and a fixed axis. The rescaling of Lu by
D;z normalizes the columns of L, to form the matrix of direction cosines
Vﬁ. The equation for computing the direction cosines associated with

the unit reference vectors of the y~th iteration is:

_ -1
v, = Lo (3]

Table 4

Direction Cosines of Second Iterative
Stage® - Matrix V

2

A, B, Cy
4, . 743 447 .371
B, .669 -.894 . 000
c, . 000 . 000 -.928

*Thurstone, 1947, p. 198
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To determine the perpendicular projections of the n variable vectors
onto the r unit length reference vectors as estimated by the wu~th
iterative 'stage it is necessary to post-multiply 7 by the matrix Ve
Postmultiplying F by Vﬁ (Equation 4) will transform the initial reference
vectors into the positions of the u~th estimate of the reference vectors
and the resulting matrix, F&, will be the reference structure matrix for

the u-th iterative stage. For the illustrative example V_ is reported

2
in Table 4 and F2 is reported in Table 5.
F = thsﬁup;l
F, = FL 07t
F, = FV, ‘ [4]

Table 5

Reference'Structure Matrix as Determined By
the Second Iterative Stage* - Matrix F

2

4q By Cs

1 ~.003 .953 .116

2 659 .163 .878

3 853 ~.183 217

4 506 .575 -734

5 741 1210 - 162

6 968 ~.090 .169

7 334 787 567

8 345 . 760 018

9 .918 .013 597

10 | 426 698 655
11 .562 529 -.075
12 -975 042 411
13 .01l 946 146
14 697 .101 . 840
15 806 ~.164 2249
16 867 189 194
17 1558 645 435
18 ~.017 1923 .078
19 597 214 864
20 852 ~.182 ~.207

*Thurstone, 1947, p. 198
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Once the reference structure matrix has been determined for the y-th
iterative stage Thurstone (1947, p. 205) suggested that the cosines of
the angular separations of the new reference vectors be asscessed. His
objective in assessing these cosines was one of being sure that none of
the reference vectors had coalesced. If two reference vectors have
coalesced the cosine of their angular separation, their corrélation, will
be unity and it may be assumed that the problem of transforming to
singularity has occurred.

The cosine of the angle of inclination between any two reference
vectors, their correlation, is the scalar product of their paired
direction cosines with respect to the fixed orthogonal frame. Equation
5 may be used to determine the matrix of intercorrelations, Y 6, of the

U

reference vectors of the u~th iterative stage.

— !
Yﬁ = VQVQ
Y = D"JL'L D"1
U U " uuu
— -1 171 -1
Yﬁ - Du Sﬁuvﬁvﬁﬁmupu [5]

The intercorrelations of the reference vectors as determined in the
second iterative stage for the illustrative example are reported in
Table 6. |

Table 6
Intercorrelations of Unit Length Reference

Vectors as Determined in the Second
Iterative Stage® - Matrix Y,

-

A2 BZ 02
A2 1.000 -0.266 0.276
BZ -0.266 1.000 0.166
02 0.276 0.166 1.000

*Thurstone, 1947, p. 198
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If the magnitudes of the small reference structure values in the
matrix F, have diminished with respect to F,, and if the magnitudes of
the large reference structure values in ¥, have increased with respect
to Fh it is reasonable to procecd to the next iterative stage. lowvever,
if two unit length reference vectors are highly correlated it is nost
prudent to stop at this particular stage.

Assessing F_ with respect to F (Tables 5 and 1) and seeing that the

2 .
magnitudes of the entries in Table 6 are small we may progress to the
next iterative step for the illustrative example.
Subsequent Iterative Stages

Plot a new set of diagrams for all pairs of columns of Fu and
examine them to determine the'adjustments which will be made in this
particular iterative stage. It is important to note here that Thurstone
plotted Fﬁ on orthogonal‘coordinate cross—section paper, even though the
reference vectors were oblique. Thus, the reference vectors of Fﬁ were
plotted as being orthogonal. The logic behind this procedure although
'basically simple is frequently quite confusing. For conceptual purposes
it may be assumed that the axes remain invariant and that it is the
coAfiguration of variable vectors that is being transformed. The
apparent paradox is associated only with the plotting of the configuration,
not with the algebra or interpretation of the reference structure loadings.
(The initial papers on the obliquimax were all written within this
conceptual framework and a majority of the algebra was also interpreted
within this framework.) The new sets of diagrams for all pairs of
columns of F2 are presented in Figures 4, 5 and 6.

In Figure 4 the termini of the variable vectors are plotted with

respect to unit reference vectors A2 and BZ' In the third iterative
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Figure 4

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
Projected Onto Plane A4,.x.
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stage unit reference vector 82 is transformed to position Bé and

Aé—primary will pass through the group of variable points 3, 15, 20, 6,
9 and 12. The variable vectors associated with these pcints will have

vanishing projections on long reference vector Bé. In the A252 plane
and B,.

the new long reference vector Bé may be described in terms of A, 9

I =
BS 1.00B2 + .1OA2
In Figure 5 the termini of the variable vectors have been plotted with

respect to AZ and 02. Unit length reference vector ., has becn transformed

to Aé. Notice that Cé~primary still passes through the variable points 13,

1l and 18 and additionally through the points 7, 10, 4, 9, 2 and 14, thus

increasing from three to nine the number of variables with vanishing
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Figure 5

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors

A_ and 02, Projected Onto Plane :i,(,
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projections on the long reference vector A). The new long reference

3

vector Aé in the A202 plane may be described in terms of the unit

reference vectors 4. and C

2 2’

I = -
AS 1.00A2 .7202

In the same figure 02 has been transformed to Cé such that the

Aé—primary passes through the group of varia?le points 3, 5, 15 and 20.
The variables 13, 1 and 18 retain their vanishing projections on (! and
additionally variables 3, 5, 15 and 20 also have vanishing projections
on the long reference vector Cé. The number of vanishing projections on
the C reference vector has increased from three to seven in the A202

plane. Long reference vector C! may be described in terms of the unit

3
.reference vectors A2 and 02.
r o .
03 1.0002 + 25A2
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Figure 6

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
82 and 02, Projected Onto Plane *.
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In Figure 6 the termini of the variable vectors have been plotted

with respect to unit reference vectors B_ and ¢ . Unit reference vector

3

variable points 1, 13 and 18. The new long reference vector C! in the

Cg’has been transformed to C! so that the Bé-primary passes through the

B _C_ plane may be described with respect to unit reference vectors B

2 2 9
and 02.
'= . - .
03 1 0002 1232
In the same figure unit reference vector B2 is transformed to Bé

such that the Cé—primary passes through the group of variable »oints 2,
14 and 19. The variable vectors 2, 14 and 19 will have vanishing

projections on the long reference vector Bé. The new long reference

24



vector Bé in the CZBZ plane may be described with respect to unit reference

vectors 32 and CZ.

B} = 1.00B, - .20C,

It is not at all uncommon for a reference vector to be transformed in
numerous planes during a single iterative stage if (r# > 3), inasmuch as
there are r(r - 1)/2 possible planar transformations. In this iterative
stage two of the reference vectors were transformed in two planes, thus
they must be described with respect to all three unit reference vectors.
The final descriptions of the new long reference vectors with respect to
the previous unit length reference vectors A2, BZ and ¢, are:

2

’-_—_ -, .
A} = 1.004, + 0.008, - .72C, ;

B! = .104 + 1.00B - .20C
3 4, 5, 2’
4 = .2 - ° +l.00 .

c 54, 125, c,

(Thurstone, 1947, p. 209)

Thurstone (1947, p. 208) referred to the coefficients of the above
equations as ''corrections'. The implication was that the new
transformations of the referencé vectors are simply corrections of the
previous transformation. It is prudent to realize that these corrections
as reported in -this paper were determined subjectively by Thurstone. He
has numerous subjective "rules of thumb'" that he utilized when determining
these corrections (See Thurstone, 1947, pp. 207-210; 212-216).

The coefficients of thé three linear cquations are the direction
numbers for the three new long reference vectors with respect to the
previous unit length reference vectors. That is to say, the coefficients
are the entries of the matrix of direction numbers Sour 11 = 2 and u = 3.

ad

The entries of Table 7 by column represent the coordinates of the

termini of the new long reference vectors with respect to the previous
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Table 7

Direction Numbers of Third Iterative Stage
Reference Vectors with Respect to the Unit Reference

Vectors of the Second [terative Stage® - Maltrix Sng

! .

Al P’ c!

é o 3
AZ 1.000 0.100 0.250
BZ 0.000 1.000 -0.120
02 ~-0.720 -0.200 1.000

*Thurstone, 1947, p. 209

unit reference vectors. The coordinates of the terminus of B! with

2’ "2

To convert the direction numbers 325 to the matrix of direction

numbers with respect to the fixed orthcgonal frare, L

respect to 4_, B, and ¢, would be (.10, 1.00, -.20).

37 Equation 1 is

used.

L,=V/.S

3 2 28

In Table 8 the direction numbers of the new long reference vectors

Aé, Bé and Cé, are reported with respect to the axes of the fixed

orthogonal framework, Aa, Bo and Co.
Table 8

Direction Numbers Of Third Iterative Stage
Reference Vectors With Respect To The Original
Fixed Orthogonal Framework* - Matrix L3

! ! !

Az Bs s
4, 476 447 .503
B, 669 ~.829 275
c 668 186 -.928

*Thurstone, 1947, p. 209
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The entries of L3, Table 8, by column represent the coordinates of
the termini of the long reference vectors with respect to the axes 10,
Bo and Co. With respect to the original axes Ao’ Bo and Co the coordinates
for the terminus of Cé are (.503, .275, ~.928).

Table 9

Lengths Of The Long Reference Vectors Determined
In The Third Iterative Stage* - Matrix D3

! ' !
A3 B3 03
1.06 .00 .00
.00 .96 .00
.00. .00 1.09

As in the previous iterative stage it is necessary to rescale the
metric of the long reference vectors to that of unit length reference
vectors. The squared lengths of the new long reference vectors, Di, are
computed through the use of Equation 2, Table 9. HMatrix L3 is column
normalized to form the matrix of direction cosines, V3, of the new unit
length reference vectors with respect to the fixed orthogonal frame,
Eq;ation 3. The matrix of direction cosines for the third iterative
stage is reported in Table 10.

Table 10

Direction Cosines of Third Iterative
Stage - Matrix V

3
Ag B, ¢,

A, 0.450 0.466 0.461

c, 0.631 0.194 -0.851

*Thurstone, 1947, p. 209 26
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The reference structure matrix associated with the third iterative

stage, F,, is computed using Equatioan 4, The reference structure ma:rix

3’

FS is reported in Table 11,

Table 11

Reference Structure Matrix As Determined
By The Third Iterative Stage* - Matrix =

“3

Ay B, C,

1 -.082 .970 .001

2 .026 .055 .938

3 .954 -.058 .016

4 -,021 .500 .723

5 . 811 .330 ~.002

6 . 800 -.031 . 337

7 -.071 .737 .510

8 .314 . 825 011

9 462 ~.017 .756

10 -, 043 .636 .621
11 .582 . 626 .002
12 . 642 -.030 .605
13 -, 090 .958 . 032
14 .088 .001 .919
15 . 931 -.037 -.026
16 . 688 . 246 . 356
17 .231 641 .456
18 -.070 . 946 -.035
19 -.024 . 104 .905
20 . 945 ~. 060 . 026

*Thurstone, 1947, p. 209

The intercorrelations of the new unit length reference vectors are
computed using Equation 5. The matrix of intercorrelations of the unit
length reference vectors, YS’ as determingd in the third iterative stage
is reported in Table 12.

The magnitudes of the loadings in Table 11 are assessed with respect
to the loadings in Table 5. Clearly the small loadings are diminishing

and the large loadings are increasing. None of the off-diagonal entries
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Table 12

Intercorrelations of Unit Length Reference Vectors
As Determined By The Third Iterative Stage* ~ Matrix Yd

3 Bs “s
Ay 1.000 -0.214 ~0.171
B ~0.214 1.000 ~0.169
Cs ~0.171 ~0.169 1.000

*Thurstone, 1947, p. 209
of Y3 are approaching unity. A fourth iterative stage is in order.

A detailed discussion of the fourth iterative stage will not be
presented in this paper. As with the previous iterative stages the
columns of the previously determined reference structure matrix are
plotted. The direction qumbers of the new long reference vectors are
estimated. The direction cosines are determined and the fourth iterative
stage reference structure matrix is computed from F. The fourth
iterative stage is the final iterative stage for the illustrative
example. The reference structure matrix and the reference vector

intercorrelation matrix as determined by the fourth iterative are

presented in Tables 13 and 14 respectively.



Table 13

Reference Structure Matrix As Determined
By The Fourth Iterative Stage* - Matrix I

g
A, B, ¢,
1 006 . 965 001
2 .032 .009 .938
3 . 964 ~.010 .016
4 .025 462 .723
5 . 854 .370 ~.002
6 810 ~.009 . 387
7 ~.003 .707 .510
8 .395 . 840 .011
9 468 ~.031 . 756
10 .015 . 602 621
11 649 654 .002
12 . 649 ~.027 .605
13 ~.003 .951 .032
14 .090 ~.040 .919
15 .943 .012 -.026
16 | .721 .263 . 356
17 . 294 . 629 456
18 .016 L1943 -.035
19 -, 014 .058 .905
20 955 ~.013 .026

*Thurstone, 1947, p. 213
Table 14

Intercorrelations of Unit Length Reference Vectors
As Determined In Tha Fourth Iterative Stage* - Matrix Yy

4y B, Cy
Y 1.000 ~0.066 ~0.188
B, ~0.066 1.000 ~0.226
c, ~0.188 ~0.226 1.000

*Thurstone, 1947, p. 213

29




—ou

Additional Algebraic Aspects of Thurstone's Iterative Methodology:
After the first iterative stage Thurstone defined, algebraically, a

second type of transformation matrix H

. This transformation matrix,

Hmu,-was used in conjunction with Eh, the previously computed reference
structure matrix, to compute the u~th reference structure matrix, Fu'

The matrix equations for computing F

0 disregarding H , are reported by

my

Equation 4.

F =8y s D1
U mmu U
7
F, = FL U,
F, =TV, [4]

Thurstone defined Lu in terms of Vﬁ and Smu’ equation 1. The matrix
Lu is geometrically meaningful. However, Hﬁu is defined in terms of Smu
and D;l and does not appear to be geometrically meaningful.
_ -1
B = Sy [5]
The matrix Fﬁ is defined as the product of the previous reference

structure matrix, Fh, post-multiplied by Hﬁu'

F = Pl [6]
Fy = FV i, . [7]

The matrix Hmu therefore transforms Fm to Fuﬂ The elements of #,, A
are neither direction cosines nor direction numbers. The entries of Sy
are expressed within the metric of the m-th stage unit reference vectors
while the entries of Di are expressed within the metric of the original
fixed orthogonal frame. Any transformation matrix may be expressed as
a product of all previous H-matrices (Thurstone, 1947, p. 206),

v, = (Hm) (H12) (H23) (H34). .o (Hmu) [§]
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For the illustrative example the H-matrices associated with third

and fourth iterative stages are reported in Tables 15 and 16. TFor the

second iterative stage HZZ is identical to V3'

Table 15

H-Matrix Computed For The Third
Iterative Stage® ~ Matrix X

28

0.945 0.104 0.229
0.000 1.042 0.110
~-0.680 -0.208 0.917

*Thurstone, 1947, p. 198
Table 16

H-Matrix Computed For The Fourth
Iterative Stage* - Matrix H

34
1.016 .050 .000
.091 .999 .000
.000 -.050 1.000

*Thurstone, 1947, p. 209
The function of Hmu may be thought of as providing an alternative

method of computing Fu directly from ﬂw as opposed to computing Fu from

F through the use of Vﬁ.
Summary of Section 1:

Thurstone's (1947) method of determining oblique transformations has
been presented within the context of two dimensional sections. Through
the use of an illustrative problem his terminology and matrices were
discussed. Although certain aspects of Thurstone's approach were modified

it may be assumed that the discussion presented in this section was taken
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from Thurstone (1947, pp. 194~224) and typifies his approach to oblique
transformation solutions.

There are numerous objections to Thurstone's procedures, all of
which are either directly or indirectly associated with the matrfxlﬂmt.
The matrix Smu is the subjective matrix of direction numbers'defining
the termini of the u~th iterative stage long reference vectors with
respect to the unit length reference vectors of the m-th iterative stage.
It would be extremely difficult for two factor analysts working
independently on the same factor matrix to determine identical oblique
solutions when using Thurstone's technique. It would be a most arduous
task for a beginniqg student to apply Thurstone's methodology successfully
to a set of data in which (» > 3). Thurstone's method becomes prohibitive
timewise as the number of factors increases inasmuch as »(» - 1)/2 plots
are required at any one iterative stage to determine Smu' It is
conceivable that a bad estimate of Smu might be obtained at some early
iterative stage and not be recognized as such for several iterative
stages. Finally, Thurstone's method is just too time consuming and
unreliable for all except the most experienced factor analyst.

Section II
A Basic Theoretical Rationale For The Simplified
Obliquimax As Provided By The General Obliquimax

In this section the ggneral obliquimax is briefly discussed with
respect to the matrix equations defining an oblique solution. Special
emphasis is placed on the matrix of direction numbers, Lu as discussed
in Section I, and the solution matrices expressed within the metric of

the original factor solution. This section discusses oblique solutions.

within the framework of variance modification and allocation. The
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function of this section is to provide a basic theoretical rationale for
the development of the simplified obliquimax in Section III.
Common Variance Modification and Allocations:

In determining an oblique transformation, a majority of the reference
vectors, if not all of them, will covary having non-zero perpendicular
proiections upon each other as opposed to an orthogonal transformation in
which none of the factor axes covary. Within the obliquimax framework
the total common variance associated with an initial factor so.ution is .
defined as the total sum of the squared projections of the variable
vectors onto the initial factor axes. The common variance associated
with any one of the initial common factors is defined as the sum of the
squared perpendicular projections of the variable vectors onto that
factor axis. An orthogonal transformation will not change the total
common variance but it will in general alter the sum of the squared
perpendicular projections associated with each common factor.

When working within an oblique framework the process of column
normalizing the direction numbers to form the matrix of direction cosines
is actually a process of converting the metric from that of the initial
fixed frame to the metric of the unit length reference vectors of the
particular iterative stage associated with the direction cosines. Thus,
for each iterative stage of an oblique solution the metric is changed’
and is not comparable to the metric of the initial fixed frame. Because
of this metric variation the sum of the squared perpendicular projections
of the variable vectors onto the reference vectors are neither comparable
between iterative stages nor comparable with the sum of the squared

projections onto the factor axes of the initial fixed freme.
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The metric of the initial fixed frame may be retained in an oblique
solution ii the matrix of direction numbers, previously defined by
Equation 1, is used in place of the matrix of direction cosines,
previously defined by Equation 3. The entries of the'resulting
"structure'® matrix would represent the perpendicular projections of the
variable vectors onto the reference vectors, but the entries would be
expressed within the metric of the initial fixed frame. Within
Thurstone's terminology such a matrix would be referred to as a long
reference vector structure®* matrix inasmuch as the entries are analogous
to perpendicular projections of the variable vectors onto the long
reference vectors as opposed to unit length reference vectors. When the
metric is held constant in this fashion, it will be observed that the
total sum of the squared‘projections of the variable vectors onto the
long reference vectors is less than the total sum of the squared
projections of the variable vectors onto the initial fixed axes. In the
next subsection it will be demonstrated that the difference between the
sum of the squared projections of the two matrices is accounted for by
the perpendicular projections of the primary vectors onto each other,
the covarying of the primary vectors.

Within this framework the role of the direction numbers of the long
reference vectors with respect to the initial fixed axes, Lu’ is one of
defining the long reference vectors in such a manner that the sum of the

squared perpendicular projections of the variable vectors onto these long

* In a latter portion of the next subsection it will be demonstrated
that the long reference vector structure matrix is not the only meaningful
name that might be given to the matrix being discussed.
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reference vectors is less than the sum of the squares of their projections
onto the initial factor axes. There should be some systematic relationship
between the matrices of direction numbers determined in successive

iterative stages such that the sum of the squared perpendicular pfojectinns
of the variable vectors onto the long reference vectors becowes successively
smaller at each stage. It will be demonstrated that such a framework will
provide numerous conceptual and algebraic advantages.

Theoretical Equations for the General Obliquimaw Transformation:

The objective of this subsection is to provide a basis for the
computational aspects of the simplified obliquimax through a brief
presentation of the equations and logic for the general obliquimax (Hofmann, 1971).

Assume some initial factor loading matrix F, defining the perpendicular
projections of 7 variable vectors onto » mutually orthogonal factor axes as
determined by the initial factoring method. The problem is to select by u,
successive approximations the unit reference vectors Au’ B, and Cu such
that the number of variable vectors with vanishing projections onto these
unit reference vectors is a maximum. (Where deemed necessary for
illustrative purposes »r yill be assumed to be three.)

In the obliquimax transformation all matriceg of direction numbers
are defined as the product of some pésitive definite diagonal matrix and
some orthonormal transformation matrix, 7. A matrix of direction numbers
developed in this manner, and the ensuing matrix of direction cosines, will
always be non-singular and generally non-orthogonal. This somewhat unusual
approach was first suggested by Harris and Kaiser (1964) in their classic
paper on determining oblique transformation solutions through the use of

orthogonal transformation matrices. Although the discussion in this paper
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will only encompass their case I and case II solutions, the general
obliquimax encompasses all three of the cases discussed by Harris and
Kaiser.

Let the 7Z~th element of the positive definite diagonal matrix Dg,
represent the sum of the squared projections of the # variable vectors
onto the Z-th factor axis associated with F.

p? = diagonal [F'F] [9]

All matrices of direction numbers within the general obliquimax
framework are defined specifically as the product of some exponential
power, p, of D and an orthonormal matrix T. Equation 10 represents the
matFix of direction numbers, Lu’ for defining the termini of the u~th
iterative stage long treference vectors with respect to the initial fixed
frame.

L, = DPr [10]

Along with the algebraic advantages of such a definition of Lu’ there
are several conceptual and interpretative advantages. In defining the
positive definite diagonal matri# as some exponential function of the
column sums of squares of F, the matrix of direction numbers is implicitly
some function of the common variance and hence a function of the
perpendicular projections of the variable vectors associated with F.

The matrix F may be rewritten as:

F = ED, | [11]
The matrix EF is the column normalized form of F and the elements of D
are the square roots of the elements of DZ. The matrix F may be post
multiplied by L, to form F; which would be the matrix whose elements
represent the perpendicular projections of the variable vectors onto the
long reference vectors determined by the u~th iterative stage.

* -
F, = FL, = FD'Pr [12]
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There are several important aspects of Equation 12 that should be
noted. Any matrix of direction numbers within the general obliquimix
framework is simply a row rescaling of T by some exponential power, p,
of the matrix D. Equation 12 may be rewritten as Equétion 13.

F’ = EDDPT [13]

The discussion of common variance associated with Fi will be based unon
the sum of the squared perpendicular projections onto the » long reference
vectors associated with FZ. Inasmuch as the columns of £ are normalized,
the matrix product (DD—pT) defines the allocation of the perpendicular
projections of the variable vectors onto the long reference vectors. That
is'to say, the common variance, within the metric of the initial fixed
frame, associated with F: can be discussed with respect to the matrix
(o0 ).

The matrix T is an orthonormal matrix of direction cosines. Therefore,
the sum of the squares of any column or row of T is unity (F'T = IT!' = I).
The square of any cosine is a proportion. The square of any diagonal
element of (DD"p) is a portion af the total common variance associated
with F. The variance aspects of FZ can be discussed through a consideration
of the squared elements of (DD~pT). The variance discussed within this
specific framework would be with respect to the sums of the squared
perpendicular projections of the »n variable vectors onto the » long
reference vectors. A symbolic representation of the squared elements of
(DD—pT) is reported in Table 17.

The variance contributed by fixed axis 4, to the sum of the squared
perpendicular projections of the n variable vectors onto all r long

2
reference vectors is (dll/dig); the variance contributed by fixed axis

B, is (dzz/dgg); the variance contributed by fixed axis c, is (dis/dgg).
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Table 17

Symbolic Representation of the Squared
Elements of (DD"PT) (assume p = 3)

vt

! ! !
Al B! C)

2 0, 2 2 8y . B 2 8 8

3} 0
(dgz/dég)cosaﬁ

d2
32 38

11 12
2 42D 2 2 ;48 2
o | (dgg/dgg)cos™Byy  (dg,/diE)cos”s,

2,20, 2 2 , 2 2
c (dgg/dgg)cos B (dgs/dgs)cos B

23
2p 2
/dgg)eos 633

2

31

(Other than noting that the exponent p will be chosen such that the total
column sums of squares of FZ is less than the total associated with F
discussion of p will be deferred at this point.) The proportion of tﬁat
variance contributed by Ao, (d?l/dig), that will be allocated specifically
to the sum of the squared projections of the variable vectors onto long
C) is 008281 A

reference vector: A& is 00826 Bﬁ is 00826

11} 12} 3"
similar interpretation may be made for the other (» -~ 1) fixed axes with
respect to the sum of the squared projections of the »n variable vectors
onto the » long reference vectors.

A portion of the total variance associated with a fixed axis is
allocated to the sum of the squared Perpendicular~projectioné of the
variable vectors onto the long reference vectors. The discussion here
concerns the proportionate distribution of this variance by a fixed axis
to each of the long reference vectors. The portion of variance associated
with the j-th fixed axis that is allocated to the sum of the squared
perpendicular projections of the »n variable vectors onto the r long

reference vectors is always (dgj/dgg). Of that particular portion of

variance, the proportionate allocation to the Z-th long reference vector
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2 .
is cos %7 <=1, 2,...r). Therefore, at any particular iterative

R
stage the only value that will be altered in Table 17 is the exponent p.
(In the definitive paper on the general obliquimax, Table 17 is further
modified to provide additional information ahout the reference vectors.)

To further clarify the role of variance modification in the general
obliquimax, it is necessary to discuss the variance covariance matrices
associated with both the reference vectors and the primary vectors. Let
the symmetric matrix R%, of order # by # and singular of rank ¥, be the
major product of F,

R* = FF! [13]
The matrix R* is a reproduced matrix whose off-diagonal elements
approximate either the observed correlations or covariances between the
n variables.

For any oblique solution Equation 14 must hold.

R* = F, (1 )" IF} [14]
The matrices Fu and Yu were previously defined by Equations ;L and 5.

Let the matrix Zu represent the matrix of intercorrelations associated

with the » unit length primary vectors. Then by definition, 2, is the

normalized inverse of Yu (Thurstone, 1947, p. 215). Let the matrix Di be

defined as the diagonal of Y;l, therefore pre~ and post~multiplication of

Y;l by D;l will result in the matrix of intercorrelations for the primaries.

D% = diagonal [¥'] [15]
Y PRy P |

Zu = D3 (Yﬁ )Dg . [16]

Through substitution from Equations 2, 3, 5 and 10, the matrix Yu may be
defined algebraically within the obliquimax framework.

Y

Y SRNCY ) JNCY
w = D, T'D "ID, [17]
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Following from Equation 17 is the algebraic definition of ., within the
obliquimax framework.

9'1) [18]

u 3

. = "'1 4 Zp "1 - '”i"-z my 2pm ry
Zy = Dy (D, T'D"TID, D &0, ) @™ 0
In Zquation 18, the matrix product of (D}JDN) is just the diagonal mitrix
D : P A .
that normalizes the columns of (/7). The matrix (uégu) is the variance
* N -
covariance matrix, Zu’ assocliated with the long primary vectors. Thus, AZ

is just the inverse of Y;.

¥ - p1p~Pp [19]
* 20m _ pyry—1
2t = 1'0%Pr = (1}) [20]

It is immediately apparent from Equations 19 and 20 that the only
algebriac difference between the primary variance covariance matrix and
the reference variance covariance matrix is the sign of the exponent p.
Furthermore, the only algebraic difference between the matrix of direction
numbers, (DpT), for the primary structure matrix, and the matrix of
direction numbers, (D—pT), for the reference structure matrix, is the sign
of the exponent P, Thus, the matrix of direction numbers for the long
primary structure matrix is just the transpose of the inverse of the
matrix of direction numbers for the long reference structure matrix.
Equations 19 and 20 incorporate the metric of the initial fixed axes.
Utilizing Equations 19 and 12 it is possible to redefine R* using

matrices expressed in the metric of the initial fixed axes.

% _ phouii=Io%,
R* = F (¥,) "F, [21]
-1
By substituting ZZ for (YZ) Equation 22 results.
Aok % :
R* = FizFS [22]

The trace of R* represents the total common variance and it is equal to
the total column sums of squares for the matrix F. Equation 22 is presented

to demonstrate that the total variance associated with F may be thought of as
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being distributed between FZ and Z;. In explaining Table 17 the variance
associated with FZ was discussed with respect to the sum of the squared
perpendicular projections of the n variable vectors onto the » long
reference vectors. It was pointed out that the variance associated with

FZ would always be less than the variance associated with s. It may

%

4 must

therefore be concluded that the common variance not allocated to *

bl

liy accounts for the

be allocated to ZZ. The variance allocated to
perpendicular projections of the ¥ lonjy primary vectors onto each other.

The variance associated with ZZ can be discussed with respect to (DpT),

the matrix of direction numbers for computing the primary structure

matrix. Although interest herc does not center on the primary structure
matrix, it may be inferred from Equation 22 that the matrix of direction
numbers associated with such a matrix is instrumental in explaining
variance allocation. The variance aspects of ZZ can be discussed through

a consideration of the squared elements of (DpT). A symbolic representation
of these squared elements is reported in Table 18.

Table 18

Symbolic Representation of the Squared
Elements of (DP7) (assume » = 3)

Aé—Primary B/~Primary C&—Primary
2p 2 ‘ 2p :12Q Zp 7 5.21".
4, d]l cos 811 dll cos 8., d]l ¢08 213
2p 2 2p r‘2 7c‘3p {‘2
B, d22 cos 621 d22 cog 622 dg. o8 823
2 2 ap 2 ap 2
c d°P cos”p- d* cos B d 208 15
0 33 B2 33 P32 33 °°° Va3

The variance contributed by fixed axis A, to the sum of the squared
9
perpendicular projections of the long primaries onto each other is (d;?);

the variance contributed by fixed axis Bo is dgg); the variance
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contributed by fixed axis C  is (di@). The proportion of that variance
contributed by AO, (d??), that will be allocated to the sum of the squared
perpendicular projections of the (» - 1) long primary vectors onto long
primary vector: A& is 0082311; B& is 8032812; ¢y, is 0032813. A similar
interpretation may be made for the other (r - 1) fixed axcs with respect
to the sum of the squared perpendicular projections of the » long primary
vectors onto each other.* .

A portion of the total variance associated with a fixed axis is
allocated to the sum of the squared perpendicular projections of the long
primary vectors onto each other. The discussion with respect to Table 18
concerns the proportionate distribution of this variance by a fixed axis
to each of the long primary vectors. The portion of variance associated
with the j-th fixed axis that is allocated to the sum of the squared
perpendicular projecticns of the » long primary vectors onto each other
is always (dj?). Of that particular portion of variance, the proportionate
allocation to the Z-th long primary vector is cosZBji, (=1, 2,...7).
Therefore, at any particular iterative stage, the only value that will be
altered in Table 18 is the exponent p.

Comparing Tables 17 and 18, several generalizations may be made.

The variance associated with the Z-th fixed axis, di-, may be divided
into two multiplicative portions (dii/dig) and <di§)‘ One portion of- the
variance, (dii/dig), is associated with the sum of the squared
perpendicular projgctions of the »n variable vectors onto the r long
reference vectors. The second portion of the variance, (dig), is
associated with the sum of the squared perpendicular projections of the

r long primary vectors onto each other. The proportionate contribution

2
of (dii/dkg) made to the sum of the perpendicular projections of the ¥

*The element dg- cosBij also represents the perpendicular projection of

the long reference vector J onto the i-th fixed axis. 42
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variable vectors onto the j-th long reference vector is cos2ﬁij. The

2
proportionate contribution of (dig) made to the sum of the squared
perpendicular projections of the (r - 1) long primary vectors onto the

J-th long primary vector is GOSZBi Equation 23 defines the division

J’o
of variance for the 7Z-th fixed axis.
2 42 2Dy 2P ' '
dig = (dgpldgg) dyg)- (23]

Several observations with respect to p can be made from Equation 23.
If (p = 0), there will be no allocation of variance to the projections of
the primaries onto each other and the associated solution will be an
orthogonal transformation solution. If (p = 1), all of the variance will
be gllocated to the projections of the primaries onto each other and the
resulting oblique solution would be analogous to the Harris and Kaiser
(1964) independent cluster solution. As the value of p progresses from
zero to unity, the amount of variance allocated to the projections of the
primaries onto each other becomes progressively larger. Thus, as p
progresses from zero to unity, one should expect the primary vectors to
become progressively more correl;ted. One might be inclined to limit the
values of p to values within the interval bounded by zero and unity, but
there is at this time no rationale for such a limitation. (For some sets
of empirical data the general obliquimax has iterated to a value of p
that is slightly larger than unity.) It is prudent to realize that for a
value of p considerably la?ger than unity, but not necessarily larger
than three, some of the diagonal entries .of pP might approach zero and
the matrix D-p will not for all practical purposes be a positive definite
pP

matrix. (Theoretically, will always be positive definite however

computationally some near zero values will function as zeros.)
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Within the framework defined, the only algebraic value that changes

from one iterative stage to the next in defining FZ is the exponent p.

The discussion, however, has centered around the long reference vectors

and long primary vectors. Traditionally an oblique solution is interpreted
within the framework of either unit length reference vectors or unit

length primary vectors. In order to establish the oblique solution within
a traditional framework it will be necessary to compute the diagonal
matrices that will rescale FZ, YZ and ZZ to the metric of unit length
vectors.

From Equations 2, 3 and 4 it may be inferred that the diagonal matrix
for rescaling FZ,tq the unit length reference structure matrix is
determined from the diagonal of (L)L, ). In the previously mentioned
equations this diagonal matrix was referred to algebraically as D;l.
Within the obliquimax framework this diagonal matrix will be referred to
as D;é. The matrix Diz is defined by Equation 24.

D2, = diagonal [7'D"2PT) [24]
Equation 4 may be rewritten as Equation 25 to define the unit length

reference structure matrix within the algebraic framework of the

obliquimax. .
- Py
Fu FD TDul [25]

In Equation 20 the variance covariance matrix of the long primary
vectors, ZZ, was defined as the inverse of the long reference vector
variance covariance matrix. It was inferred from Equations 19 and 20
that the matrix of direction numbers for transforming F to the long
primary structure matrix was just the transpose of the inverse of the

matrix of direction numbers necessary to transform F to the long

.~eference structure matrix. However, the primary structure matrix is not
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generally used for interpretative purposes, It is the primary pattern
matrix that is interpreted within Holzinger's framework. The matrix
necessary to transform the initial matrix F to the primary pattern
matrix, denoted as Wﬁ, is by definition the transpose of the inverse of
the primary structure transformation matrix. The primary structure

transformation matrix is just the column normalized form of the

1

direction numbers associated with the long primary vectors. Let D;Z

represent the diagonal matrix that normalizes the columns of (D?T).

Then from Equations 24 and 25 Equations 27 and 28 follow as:

Dzz = diagonal [T'D2pT]; [27]
= o lprp2pop]
Zy, = D ,T'D TDuZ. [28]

~1. .
Let the matrix (DpTDuZ) represent the transformation matrix for the

primary structure matrix. The transpose of the inverse of this matrix is
-p 1

pPrp” 9.

ORL

The matrix necessary to transform F to the primary pattern matrix,

- 1
W,s as determined by the y-th iterative stage is (D pTDuZ).

w = FpPrpl
Uu

U [30]

2
However, if reference is made to WZ, the parallel projections of the n
variable vectors onto the r long primary vectors, then the entries being
referred to are parallel projections within the metric of the initial
fixed frame. That is to say, WZ is just Wﬁ without the column rescaling.
W, = FD Er [31]
Comparing Equation 31 with Equation 12 it becomes immediately evident that

W*

= F} = Fp Pr, [32]

The Holzinger parallel projections of the n variable vectors onto
the r long primary vectors are identical to the Thurstone perpendicular

projections of the n vartable vectors onto the r long reference vectors.
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That i1e to say, when the metric of the initial factor solution is retained
in place of either unit length reference vectors or unit length primary
vectors the Holzinger pattern matrix and the Thurstone structure matrix

are itdentical. (In earlier papers on the obliquimax ﬁz and FZ

were
referred to as one matrix, the 'basic matrix.')

The above paragraph follows logically from an earlier paper presented
by Harris and Knoell (1948) in which they derive a diagonal matrix that
will rescale the columns of a Holzinger pattern matrix to those of a
Thurstone structure matrix. The inverse of this matrix will rescale the
columns of a Thurstone structure matrix to those of a Holzinger pattern
matrix. Their discussion centered around the geometry of the two
solutions and was considerably less complex, algebraically, than this
section.

In their discussion Harris and Knoell (1948) demonstrate that the
Thurstone structure values represent the bases and the Holizinger pattern
values represent the hypotenuses of similar right-angled triangles. The
elements of the diagonal rescaling matrix that they use for their
conversion represent the correlations between the reference vectors and
their associated primary vectors. They note that a primary vector is
defined by the intersection of (¥ - 1) hyperplanes and it is uncorrelat:d
with the normals to these hyperplanes. Therefore, each primary vector is
by definition orthogonal to all but one reference vector. Each reference
vector is correlated with just one primary vector.

The correlation betweeh a unit length reference vector and a unit
length primary vector is defined as the scalar product of the paired

direction cosines of the vectors. Equation 33 defines the diagonal

matrix D,, whose Zi-th element represents the correlation between the i-th
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reference vector and its associated Z-th primary vector.

= ¢ lminp -1y _ p=1-1
Dy = (D T'DP) (P10 ) = DD [33]

Summary of Section IT
‘The basic framework for the general obliquimax has been discussed.
The algebraic definitions of certain oblique solutions were discussed

within the framework of common variance and perpendicular projections.

The "solution equationd'of the general obliquimax may now be summarized.

-1

Reference Structure = FD"pTDuZ

Primary Pattern = FD"pTDug

) . "1 jadd
Primary Intercorrelations = DugT’DngDué
P -1 "'2‘9 —1
Reference Intercorrelations = D ;T'D “ID, .

Intercorrelations Between Primaries and Reference Vectors = D;iD;é

The discussion presented in this sect:ion is by no means complete.
There has been a minimum of discussion concerning the exponent p and
there has been no discussion with respect #o the specific computation of
T. 1In the next section the computation of T will be briefly discussed
and the use of the exponent p will be somewhat clarified. This section
has provided a basic ragionale for the equations to be used in the
simplified obliquimax.

Section III
The 3implified Obliquimax

Having discussed certain interpretative properties of the direction
numbz2rs and defined in part ihe analytic computations of the direction
numbers it is now possible to re-establishk the problem of computing an
oblique transformation within an obliquimax framework. The iterative

procedure developed in this section, referred to as the simplified

‘obliquimax, is developed for pedagogical purposes. Certain matrices are
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modified in the iterative process to provide computational simplicity.,
The sim»lified obliquimax is a reliable semi-subjective transformation
procedure that will allow beginning students to successfully compute an
oblique transformation solution. It is also hoped that the simplified
obliquimax will clarify certain aspects of oblique transformations in
general.

Assume some factor loading matrix, F, defining the perpendicular
projections of n Ygriable vectors onto r mutually orthogonal factor axes.
The r axes are arbitrarily orthogonal axes as determined by the initial
factoring method. For illustrative and comparative purposes the
simplified obliquimax will be discussed within the framework of
Thurstone's (1947, pp. 140-144) classic box problem. The centroid
solution for the box problem is reported in Table 1. For this particular
set of data (n = 20) and (» = 3).

The r axes may be denoted as 4,, B, and C,. These arbitrary axes
are regarded as fixed in position. The problem is to select by u
successive approximations the unit refereﬁce vectors, 4,, B, and Cus
such that the number of variable vectors with vanishing projections onto
these unit reference vectors is a maximum.

With the exception of the exponent p and the final diagonal rescaling
matrices all matrices necessary for computing either a reference structure
or a primary pattern matrix can be determined prior to the computation
of p. Thus, the problem at hand is one of determining a value for the
exponent p such that the associated reference structure matrix will have
a maximum number of vanishing projections.,

In starting the iterations for the simplified obliquimax the matrix
Dg is determined from F through the use of Equation 9. Presented in

Table 19 is Dg whose 77~-th element represents the total sum of the
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squared projections of the 7 variable vectors onto the Z~th fixed axis.
D? = diagonal [F'F] 9]
Table 19
The Positive Definite Diagonal Matrix Whoée 1i~th

Element Represents the Variance Associ%ted with
the 7Z-th Fixed Axis ~ Matrix D

A’O BO CO
12,567 .000 .000

.000 3.920 .000

.000 . 000 3.154

The orthonormal transformation matrix I used in the simplified
obliquimax is computed from F using Kaiser's (1958) normal varimax
transformation procedure. A complete rationale for the use of the normal
varimax transformation is beyond the scope of i''ls paper. A very basic,
tnough not particularly compelling, rationale for its use is that a
primary vector may be defined in a special sense as a linear least squares
approximation to a group of variable vectors without the restriction of
mutual orthogonality and the normal varimax axes are with the restriction
of mutual orthogonality in a special sense a linear least squares
spproximation to a group of variable vectors. It is assumed, and as will
be seen, this is a critical assumption, that if the restriction of
orthogonality were placed on the primary or reference vectors they would
occupy the precise positions of the varimax axes.

Initially the matrix F must be transformed orthogonally to determine
T. The matrix FT will be utilized in the simplified obliquimax as opposed

to F. The matrix FT may be thought of as a preparatory matrix for the
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iterative stages (see Table 20 for FT). The varimax axes will be assumed
as the initial » unit length reference vectors and will be referred to as
Ays By and Cp. (The subscript ¥ referring to orth;gonal varimax axes.)
As in Thurstone's procedure the r unit length reference vectors are
initially assumed to be mutually orthogonal, Contrary to Thurstone's
procedure the initial unit reference vectors of the simplified
obliquimax are not collinear with the ¥ initial factor axes.

Table 20

Initial Factor Matrix Orthogonally
Transformed By Normal Varimax -~ Matrix FT

A, B, ¢,
1 0.052 ~0.990 ~0.109
2 0.146 ~0.142 ~0.973
3 0.984 ~0.050 ~0.103
4 0.135 ~0.576 ~0.803
5 0.887 ~0.431 -0.117
6 0.872 ~0.094 ~0.472
7 0.091 ~0.797 ~0.605
8 0.443 -0. 887 ~0.141
9 0.566 -0.102 -0.820
10 0.118 ~0.705 -0.710
11 0.692 ~0.711 ~0.134
12 0.733 -0.095 -0.681
13 | 0.046 ~0.980 ~0.139
14 0.200 ~0.092 -0.954
15 0.958 -0.065 =0.060
16 0.790 -0.362 -0.462
17 0.384 ~0.726 ~0.568
18 0.057 ~0.963 -0.071
19 0.097 -0.185 ~0.940
20 0.975 -0.048 ~0.112

Although graphical plots are not necessary in computing the simplified
obliquimax they are presented initially for comparative and illustrative
purposes. Figures 7, 8, and 9 represent the planar plots of the variable
points with respect to the fixed axes. Also included in these figures are
the projections of the unit reference vectors Av, By, and (.

a0
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Figure 7

Planar Plots of Variable Vector Termini with Respect
to Fixed Axes 4, and B,, Projected Onto Plane 4,8,

Fo
10+

N

ot .

' \ 2 /:’ .,
al /s .

A,
A}
\3 34
EENE—— 7T VSRV VY \\ 2 e :
e e e o PfI6c10d Varsmax Vetor \ et
*, '
1+ .
\ ay
1. 4 i 4 $ 4 i i 1 i L 1 Kl 3 4 -
. r ¥ ¥ 4 LA 3

I PRS0 e et S Yot Yt St Pt HE St S B S S 9 10
Mg s
w2 A AL
~34 .
e o \ e
-5 \
e L J A
-7 4 \\ so 0
—. s

£ 1

=104

Figure 8

Planar Plots of Variable Vector Termini with Respect
to Fixed Axes Ao and Co’ Projected Onto Plane 4,C,
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Figure 9

Planar Plots of Variable Vector Termini with Respect
to Fixed Axes B, and C,, Projected Onto Plane B,C,
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The normal varimax transformation matrix, I, is a matrix of direction
cosines defining the unit reference vectors 4;, By and C, with respect to
the fixed axes AO, B,, Cb. This matrix will be utilized in all iterative

stages and 1s presented in Table 21.

Table 21
The Orthonormal Transformation Matrix Computed From F By
- . The Norma) Varimax Transformation Procedure - Matrix T
( 4y By Gy
B, .564 . 797 -.217
Cb .58l -.196 .790
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In the previous section it was established that a good estimate of
p will usually be some number bounded by zero and unity. Select some

small number less than unity but greater than zero and call that number

&

2. The initial estimate of the exponent p will be 2. TFor the
illustiative example & is chosen to be .20. (This choice for the
illustrative example is not arbitrary. The rationale for choosing .20
instead of .05 or .50 will become apparent. In practice a choice of .10
would be a very safe estimate.)

Using ¢, T and D a matrix of direction numbers is defined as T'D~mT.
This matrix of direction numbers defines the termini of a new set of long
reference vectors with respect to the axes of the orthogonally
trangformed matrixz FT or the varimax axes 4, B, and C,. Because the
matrix T is orthonormal post-multiplying FT by 7'0"%r will result in an

Equation, 34, analogous to Equation 12,

F, = FDPr [12]
F; = (FT)(T'D™*T) = Fp %7 [34]

Effectively, the post-multiplica£ion of (FT) by (7'D"®7) is the same as
post-multiplying (#) by (D°PT) if p = x. The matrix (T'D™*P) corresponds

to the subjective Thurstonian matrix 312 at this point of the paper,

however it will be referred to simply as S and for subsequent iterative
stages it will be somewhat different in function than Thurstone's Sy, matrix.
S =D % *' - ' [35]

In Figures ld, 11 a;é 12 the vafiable points have been plotted with respect
to the columis of FT (se; Tébl§ 20). The términi of the long reference
vectors Aé: Bi and Ci have been plotted with resmect to Ays Dy and Cv,‘

the varimax axes. The coordinaties for the termini of the new long reference

vectors with respecr' to varimax axes 4,, B, and Cv (initial » unit length

referelce vectors) are given by the columns of the matrix S in Table 22.

03



Table 22

Symmetric Matrix of Direction Numbers of First
Iterative Stage Reference Vectors with Respect
To Previous Reference Vectors® - Matrix S

Ay By, ¢y
!
Au—:l . 846 .030 041
B! . .030 . 842 ~,034
u-1
cr - 041 -.034 .853
u-1

*Subscripts will be referred to in a
later portion of this paper.

Figure 10

Planar Plots of Variable Vector Termini with Respect
To Varimax Axes 4, and B,, Projected Onto Plane 4,B,
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Figure 11

Planar Plots of Variable Vector Termini with Respect

To Varimax Axes 4, and C),, Projected Onto Plane Ay Ty
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Figure 12

Planar Plots of Variable Vector Termini with Respect
To Varimax Axes B, and Cys Projected Onto Plane Bva
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Equation 34 may be rewritten as Equation 36 to specifically define

the long reference structure matrix with respect to the first iterative

stage.%
F; = FTS = FD %p ©[36]

The first iterative stage long reference structure matrix is reported in
Table 23.
Table 23

Long Reference Structure Matrix as Determined

By First Iterative Stage - Matrix F;
! ! 4
AZ BZ CZ

1 0.010 -0.828 ~0.057
2 0.079 -0.082 -0.819
3 0.826 -0.009 -0.046
4 0.064 -0.454 -0.659
5 0.733 -0.332 -0.048
6 0.715 -0.037 -0.364
7 0.028 -0.647 -0.485
8 0.343 -0.728 -0.072
9 0.442 -0.041 -0.673
10 0.050 -0.566 -0.577
11 0.559 -0.573 -0.061
12 0.589 -0.035 -0.547
13 0.004 -0.819 -0.083
14 0.127 -0.039 -0.802
15 © 0.806 -0.024 -0.010
16 0.638 -0.265 -0. 349
17 0.280 -0.580 -0.443
18 0.017 -0.807 -0.025
’ 19 0.038 -0.120 -0.791
20 0.819 -0.007 ~0.054

Within Thurstone's algebraic framework the initial matrix of
direction cosines, V,, is post-multiplied by the matrix S,7 to form the
matrix.Lz. The matrix.Lz is the matrix of direction numbers for the long
reference vectors with respect to the fixed frame. Within the

obliquimax framework V, is just T and Sp7 18 8, therefore:

*It is important to note here that unlike Thurstone (1947) we do not
assume F to represent the first iterative stage of the oblique transformation

“ solution, nor do we assume FI to represent the first iterative stage. 56
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Ly=VS ;= r(rrp % r) = D%, [37]

If x is equal to p Equation 37 would be identical to Equation 10.

()
&
[

D™Pr [10]
The variance-covariance matrix of the first iterative stage reference
vectors, Y;, is computed using Equation 19 and may be inferred from
Equation 5 and 37 as:

v3 =m0 % 2 6% - 55 = @0 ny (@0 0T) = 5'5. [38]
Inasmuch as the matrix of direction numbers, S, is symmetric it is
sufficient to simply multiply it by itself and note that Y; = 52.

Table 24

Variance Covariance Matrix of the First Iterative
Stage Long Reference Vectors - Matrix Y*

1
Y B! e
I 1 1
Al 0.713 0.049 0.069
B 0.049 0.711 -0.057
ol 0.069 -0.057 0.730

The variance~covariance matrix, (see Table 25), of the first iterative
2 .
stage long primary vectors, Zl’ is just the inverse of Y, (see Table 24),
. . . . -1
which is the product of the inverse of the direction numbers, § ",

pre-multiplied by its transpose, CS-J)’. Inasmuch as § is a symmetric

matrix Z; is just 52,
77 = 0% = 572 = 57157l o (pipUry (o10Fr) = (Y;)-l [39]

The problem of coalescing of the reference vectors has been
eliminated by the definition of the obliquimax direction numbers.
Therefore, unlike Thurstone's solution it is not necessary to rescale
* to form Y_, to check for coalescing of reference vectors. At this

1 1

point of the discussion it will be assumed that a second iteration is

o7
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Table 25

Variance Covariance Matrix of the First Iterative
Stage Long Primary Vectors - Matrix z*

A;-primary Bé-primary C;-primary
A-primary 1.416 ~0.110 -0.140
B;-primary -0.110 1.427 0.123
C;-primary -0.142 0.123 1.395

needed. A discussion of the evaluation of the long reference vector
structure matrix will be deferred until after the discussion of the
computation of subsequent iterative stages. (For the reader's interest
the first iterative stage unit length reference structure matrix and unit
length reference vector intercorrelation matrix are reported in Tables 26
and 27 respectively.)

Table 26

Reference Structure Matrix as Determined
By The First Iterative Stage - Matrix Fl

Al Bl 01
1 0.012 -0.982 -0.067
2 0.093 -0.097 -0.958
3 0.975 -0.011 -0.054
4 0.075 -0.538 -0.772
5 0.865 -0.394 -0.056
6 0.844 -0.044 -0,426
7 0.033 -0.768 -0.568
8 0.404 -0.864 -0.084
9 0.522 -0.048 -0.787
10 0.059 -0.671 -0.675
11 0.659 -0.680 -0.071
12 0.695 -0.041 -0.640
13 0.004 -0.972 -0.097
14 0.150 -0.046 -0.938
15 0.951 ~-0.029 -0.011
16 0.753 -0.315 -0.409
17 0.330 -0.688 -0.519
18 0.020 -0.957 -0.029
19 0.045 -0.142 -0.926
20 0.967 -0.009 -0.063

o8



Table 27

Intercorrelations of the Unit Length Reference Vectors
As Determined By the First Iterative Stage - Matrix Y

i
4 51 “1
AZ 1.000 0.069 0.095
01 0.095 ~-0.079 1.000

A symmetric matrix of direction numbers, S5, was defined in the first
iterative stage. This matrix of direction numbers will be a constant
throughout all iterative stages. Specifically it describes the termini
of the present iterative stage long reference vectors with respect to the
previous stage long reference vectors. Here it must be emphasized that
the obliquimax matrix of direction numbers S is distinctly different from
Thurstone's matrix of direction numbers Smu‘ For the first iterative
stage these two matrices have idgntical roles. On subsequent iterative
stages the obliquimax matrix S defines the termini of the present iterative
stage long reference vectors with respect to the previous iterative stage
long reference vectors. On subsequent iterative stages the Thurstone
matrix S, defines the termini of the present iterative stage long
reference vectors, u, with respect to the previous iterative stage unit

length reference vectors, m. To compute the second iterative stage long

*

reference structure matrix it is only necessary to post-multiply F1 by S.
(See Table 28 for F;; for céntinuity F2 is reported in Table 29.)
F; = 0%y = (%) (0107 = F;S [40]

29



Long Reference Structure Matrix As Determined
By Second Iterative Stage ~ Matrix F

Table 28

*

2
4 4 !
4y By Cq
1 ~0.019 -0.695 ~0.020
2 0.031 ~0.038 ~0.692
3 0.697 0.019 ~0.005
4 0.013 ~0.357 ~0. 544
5 0.608 ~0.256 0.000
6 0.589 0.003 ~0.279
7 ~0.015 ~0.527 ~0. 390
8 0.265 ~0. 600 ~0.022
9 0. 345 0.002 ~0.554
10 0.001 ~0.455 ~0.470
11 0.453 ~0.463 ~0.009
12 0.475 0.007 ~0. 441
13 ~0.025 ~0.686 ~0.042
14 0.073 ~0.001 ~0.677
15 0.680 0.004 0.026
16 0.518 ~0.192 -0.262
17 0.201 ~0. 465 ~0. 347
18 -0.011 ~0.678 0.007
19 ~0.004 ~0.073 -0. 669
20 0.690 0.020 ~0.012
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Table 29

Reference Structure Matrix As Determined By
Second Iterative Stage - Matrix F

2
Ay B,, C,
1 . -0.026 -0.972 -0.027
2 . 0,042 -0.054 -0.941
3 0.964 0.026 -0.007
4 0.018 ~0.500 -~0.740
5 0.841 ~0.358 0.001
6 0.814 0.004 -0.380
7 | =0.021 -0.738 -0.530
8 0.367 -0.840 -0.030
9 | 0.477 0.003 ~-0.753
10 0.002 ~-0.636 ~0.639
11 | 0.626 -0.648 -0.013
12 0.657 0.010 -0.600
13 | -0.034 -0.961 -0,058
14 |  0.101 ~0.002 0,921
15 0.941 0.006 0.035
16 0.716 ~0.269 -0,357
17 0.278 ~0,650 -0.471
18 + =0.015 ~0.948 0.010
19 -0.005 -0.,102 -0.,910
20 0.955 0.028 -0,016
Note that effectively (TT' = I) and that post-multiplying F; by §

is tantamount to rescaling the rows of (D-mT) by the matrix D~x and then
post-multiplying F by (D-2mT). The matrix (D-ZwT) is simply the matrix
of direction numbers defining the termini of the long reference vectors
with respect to the initial fixed axes.

The variance covariance matrix of the second iterative stage long
reference vectors is computed directly from Y; through pre- and post-

multiplication of'Y; by S. (See Table 30 for Y,.; for continuity Y2 is

*.
2’
reported in Table 31.)
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Table 30

Variance Covariance Matrix of the Second Iterative
Stage Long Reference Vectors - Matrix y*

2
[} ! [}
Az BZ 02
Aé 0.522 0.066 0.097
Bé 0.066 0.511 ~-0.079
Cé 0.097 -0.079 0.541
Table 31

Intercorrelations of the Unit Length Reference Vectors
As Determined By The Second Iterative Stage - Matrix Y

2
A B
2 2 02

AZ 1.000 0.129 0.183

BZ 0.129 1.000 ~0.150

02 0.182 -0.150 1.000

- - o

y; = v ¥y o (0™ %py (70" Cry (707" = SY38 [41]
Equation 41 may be further simplified algebraically as:
vy = s, | [42]

Following logically from Equation 42 is the computational equation for the

variance covariance matrix of the second iterative stage long primary

vectors. (See Table 32.)

z,= 5" - [43]
From the discussion of.the first two iterative stages of the

simplified obliquimax it may be inferred that through an application of

the laws of exponents any iterative stage can be developed directly from

the first iterative stage without computing intermediate iterative stages.
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Table 32

Variance Covariance Matrix of the Second Iterative
Stage Long Primary Vectors ~ Matrix Z;

' 4 N ' * o”‘ B
A9~przmard Bz—przmary Cé~przuary

Aé-primary 2,031 -0.327 -0.411
B -primary ~0.327 2 057 0.359
Cé~primary ~0.411 - 0.359 1.975

Assume that one wishes to determine the long reference structure matrix

associated with the U-th iterative stage.

s 1p™%p 1p-“p ™%y .. (oD
F, = FI(T )1 (T'D )2 (7'D )3 (T'p T)u
F} = FT(7'D" %1% = Frg*
Fy = FI(r'0™%r) = Frs®
FZ = 0 % = prg* [44]

Because the matrix of direction numbers, S, is symmetric and because
it is a constant at all iterative stages the matrix (¥T) need only be
U . .
post-multiplied by (5" ) to determine the u-th iterative stage long

reference vectors. For the m-th iterative stage the matrix F* is

(m=-1)
simply post—mulfiplied by S to determine‘ﬂ;.
The variance covariance matrix of the u#-th iterative stage long

reference vectors may be determined in a similar fashion. Assuming that

the variance covariance matrix is computed by a pre- and post-multiplication

O
t+h

the previous iterative stage variance covariance matrix by S:

- - : - - - -
v = @ %y ...@ )y @y @pFr) @y ... ) s
U u L2 1 1 P u
—x -
y;: = (@'p 7). (D 1)
- 2u U
y: = (D %) = 5775
_ 2
Y = @D BTy o g, [45]
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Thus, the variance covariance matrix of the u~th iterative stage long
reference vectors is just the matrix of direction numbers raised to the
2u~th exponential power. Following from Equations 42, 43 and 45 the
variance covariance matrix of the u~th iterative stage long primary
vectors is:

ZuxT -2U

* ' =
Zu = (T'D )y =8 ", [46]

Using Equations 24 and 27 the diagonal rescaling matrices Dzz and
DZ may be determined from YZ and ZZ respectively. The columns of matrix

ul

FZ as defined by Equation 44 may be rescaled by D;; to form the reference

structure matrix, Fu’ or they may be rescaled by Du2 to form the primary
pattern matrix, Wﬁ.

Table 33

Diagonal Rescaling Matrix Necessa5y to
Rescale F; to F_ -~ Matrix D7

2 .21
! ! !
A2 B2 02
1.383 .000 - . 000
. 000 1.399 .000
.000 . 000 1.360
Table 34

Diagonal Rescgling Matrix .Necessary

To Rescale F2 to Wé ~ Matrix 022

Aé-primary B y-primary C g-primary

1.43 0.00 0.00
0.00 1.44 0.00
0.00 0.00 1.41

64



64

~1 -
The matrices D21 and DZ; are reported in Tables 33 and 34

respectively. The two column rescalings of r*

to form F_ and _ are

2 2 2
reported in Tables 29 and 35 respectively. The matrices Y; and Z; have
been rescaled by D;i and D;; respectively to form YZ and Zo which are

reported in Tables 31 and 36 respectively.
Table 35

Primary Pattern Matrix As Determined By
Second Iterative Stage - Matrix W

2
A2~primary Bz~primary 02~primary
1 -0.027 -1.001 ~0.028
2 0.044 -0.055 -0.976
3 0.999 0.027 -0.007
4 0.019 -0.514 ~-0.767
5 0.869 -0.369 0.000
6 0.842 0.004 -0.393
7 -0.021 -0.756 -0.550
8 0.379 -0.864 -0.031
9 0.493 0.003 ~-0.781
10 0.001 -0.655 -0.662
11 0.648 -0.667 -0.013
12 0.679 0.010 -0.622
13 -0.036 - -0.988 -0.059
14 0.104 0.001 -0.955
15 0.972 0.006 0.037
16 0.741 -0.276 -0.369
17 0.287 -0.670 -0.489
18 -0.016 -0.976 -0.010
19 -0.006 -0.105 -0.943
20 0.987 0.029 -0.017
Table 36

Intercorrelations of Unit Length Primary Vectors

As Determined By The Second Iterative Stage - Matrix 22

Az-primary Bz-primary C g~primary

Az-primary 1.000 -0.159 -0.206
Bz-primary -0.159 1.000 0.177
CZ-primary -0.206 0.177 1.000
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Comparing Tables 29 and 31 with Tables 13 and 14 of Thurstone's
solution it is evident that the second iterative stage solution as
determined by the simplified obliquimax closely corresponds to the final
oblique solution as determined by Thurstone. For this illustrative
example a reasonable estimate of p was (ux = .40). For any qblique
solution the final estimate of p as determined by the y~-th iterative
stage will be ux.

In the simplified obliquimax the symmetric matrix of direction
numbers, S, is used in an algebraically similar manner as Thurstone's
matrix Hﬁu (Equations 6-8). Thurstone post-multiplied the m-th reference
structure matrix by H, to obtain the %-th reference structure matrix.

In the simplified obliquimax the (u~1)-th long reference structure matrix,
(u - 1 =m), was post-multiplied by the symmetric matrix S to obtain the
u-th long reference structure matrix. At each iterative stage Thurstone
had to compute Hhu’ In the simplified obliquimax the matrix § is a
constant matrix that is computed prior to the iterative stages. If
Thurstone had defined Sy, @s a constant symmetric matrix and used it in
place of Hy, his solution would be algebraically identical to the
simplified obliquimax.

Ad@%tional Geometric Asvects of the Simplified Obliquimax Matrices S and
(D T)

Noting that the matrix S remains constant across iterative stages it
may Le correctly inferred that the Z-th long reference vector of the u~th
iterative stage has angles of inclination with the » long reference
vectors of the (u-1)-th iterative stage that are identical to the angles

of inclination that the Z~-th long reference vector of the (y-1)-th

iterative stage has with the » long reference vectors of the (y-2)-th

iterative stage. If in Figures 10, 11 and 12 the variable points were
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eliminated and the scalings of the axes were eiiminated the remaining
vectors would be representative of the plot of the new long reference
vectors of the previous stage (see Figures 13, 14 and 15).

It is
prudent to keep in mind that even thuugh the reference vectors are

oblique, the plots are on orthogonal coordinate cross-section paper.

As in Thurstone's approach (see Subsequent Iterative Stageg) it is only

for conceptual purposes that thic plotting approach is used.

Figure 13

Long Reference Vectors A and B) Plotted With
Respect to Long Reference ﬁ
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Figure 14

Long Reference Vectors A' and C'! Plotted With
Respect to Long Reference %ectors'A&_j and C/
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Figure 15
Long Reference Vectors B}, and (), Plotted With

Respect to Long Reference Vectors B,_; and Cl-1>
Projected Onto The B&_10&_1 Plane
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In Figures 16, 17 and 18 the termini of the variable vectors are
plotted with respect to the planes defined by the initial fixed axes.

The unit reference vectors as determined through five successive iterative
stages (x = .20) have also been plotted and labeled in these Figures. From
these figures, several important geometric properties of the obliquimax may
be inferred with respect to the matrices D-x, DP and T,

The angle of %nclination between the long reference vectors and the
previous iterative stage reference vectors remains constant throughout the
iterative stages. Although it is not clearly apparent in Figures 16, 17
and 18 there is a very systematic divergence of the reference vectors from
the varimax axes toward the initial fixed axes from one iterative stage to
the next iterative stage. If Figures 16, 17 and 18 were combined and
plotted in a B;dimensional space it would be clearly seen that the termini
of the reference vectors follow distinct, predictable '"paths" in space
from one iterative stage.to the next. Each reference vector will appear
to converge toward the initial fixed axis associated with the smallest
value in the matrix D2. Within the framework of planar plots it may be
observed that both reference vectors will tend to diverge from each other
but in so doing they will converge toward that fixed axis, of the two
defining the plane, that is associated with the smaller value in the
matrix D2.

Within the framework of the general obliquimax and, hence, the
simplified obliquimax there are well defined paths in n-dimensional space
that the termini ;f the reference vectors will follow through successive
iterations. These paths are determined a priori by the orthonormal
matrix T. An orthonormal matrix computed from F by the quartimax or

equamax (assume » > 2) criteria will not define paths that are the same
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Figure 16

Five Sucéessive Approximations to Long
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Figure 17

Five Successive Approximations to Long

Reference Vectors A’ and C' Projected Onto The 4 oCo
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Figure 18

Five Successive Approximations to Long
Reference Vectors B' and (' Projected Onto The B,C,
Plane Defined By The Original Fixed Axes B, and Co
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as the paths defined by the varimax criterion. Aside from the somewhat
weak algebraic rationale for the varimax transformation matrix, two years
of empirical investigation has firmly established the superiority of the
varimax 7 in the general obliquimax transformation (The varimax 7T has

never failed to give good results for a properly factored set of data.).
Although these paths are not fully understood it is known that they meet

ag the origin. At the origin all of the reference vectors will coalesce
into a point. As the termini of the reference vectors traverse these paths
toward the origin the reference vectors become progressively more correlated.
These paths may be discussed superficially as a group using the simple
analogue of (rate x time = distance). The rate at which the reference
vector termini traverse their paths as a group may be thought of as x. A
unit of time may be thought of as an iterative stage. The total distance
traversed is then a function of the value of & in the simplified obliquimax
equations and the number of iterative stages.

It may be assumed that at some relative distance p along these paths
there are r points defining the termini Of r reference vectors such that
the number of vanishing perpendicular projections of the variable vectors
onto these 1 reference vectors is a maximum.

Assume that (p = .40), as it does in the illustrative problem. A

choice of (x = .0l) would denote a relatively slow rate requiring more

time to arrive at distance (p = .40) than a rate of (x = .20). When

(x = .01) the time required to arrive at p would be (u = 40) the number

of iterative stages. When (x = .20) the time required to arrive at p
would be (1 = 2) the number of iterative stages.
Note that in Figures 16, 17 and 18 the reference vectors passed

through p and that the number of vanishing projections onto the reference

74



74

vectors determined by the fifth iterative stage is less than the number
of vanishing projections onto the reference vectors determined by the:
second iterative stage. The reference vectors associated with (x = .25)
may be inferred from Figures 16, 17 and 18. TFor (x ='.25) the reference
vectors will always, for any particular iterative stage, diverge farther
than those reference vectors associated with (x = .20). The first
iterative stage for (x = .25) would be a better approximation to (p = .40)
than (x = .20), but on the second iterative stage those reference vectors
associated with (x = .20) would be the reference vectors associated with
(p = .40) while the second iterative stage reference vectors associated
with (x = .25) would have diverged beyond the ideal reference vectors
associated with (p = .40). Thus, it is most prudent that the estimate of
x be small. (A reasonable estimate for most sets of data would be .10.)
The larger the estimate the more probable is the possibility of jumping
past p in a-single iterative stage. A value of (x = .20) was chosen for
the illustrative example as the ideal value of p was known to be
approximately (.40) and a value of (# = .20) would only necessitate two
iterative stages.
When to Stop Iterating

Having discussed the simplified obliquimax computationally and
geometrically it is now necessary to briefly discuss the concept of
vanishing projections within the obliquimax framework. Ideally orne would
like some analytic criterion to assess an oblique solution, however the
discussion of such a critefion will not be presented in this paper. (Two
analytic criterion have been established for use with the general
obliquimax and an additional four are being investigated.)

Traditionally a subjective evaluation of the unit reference structure

matrix loadings is used to judge the suitability of an oblique solution.
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If the small éntries of the y~th iterative stage reference structure
matrix are’larger than their corresponding values in the (y-7)-th
iterative stage reference structure matrix it may be assumed that for
the set of possible solutions that might be defined using a specific
value of x the (u~1)-th solution is the best in terms of the number of
vanishing projections onto the unit length reference vectors.

Table 37

Long Reference Structure Matrix As Determined
By Third Iterative Stage -~ Matrix 7

3
Aé Bé Cé

1 -0.038 -0.585 0.006
2 -0.004 -0.008 ~-0.588
3 0.589 0.037 0.024
4 -0.022 -0.281 -0.451
5 0.506 -0.197 0.034
6 0.486 0.030 -0.214
7 -0.045 -0.431 -0.315
8 0.205 -0.497 0.013
9 0.269 0.031 -0.458
10 -0.032 -0.367 -0.385
11 0.369 -0.376 0.027
12 0.383 0.035 -0.357
13 -0.043 -0.577 -0.014
14 0.034 0.024 -0.574
15 © 0.577 0.023 0.050
16 0.421 -0.137 -0.196
17 0.142 -0.373 -0.271
18 -0.029 -0.571 0.029
19 -0.033 -0.038 ~-0.568
20 0.584 0.038 0.018

Within the framework of the simplified obliquimax the long reference
structure matrix may be evaluated in place of the unit length reference
structure matrix. The number of vanishing projections onto the long
reference vectors will also be a maximum for the iterative stage
associated with the best estimate of p. 1In Tables 23, 28 and 37 the

first three iterative stage long reference vector structure matrices are
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reported. In comparing Tables 23 and 28 the low loadings associated with
Table 28 are smaller in magnitude than their corresponding loadings in
Table 23. 1In comparing Tables 28 and 37 it may be observed that the low
loadings in column three of Table 37 are smaller in magnitude than their
corresponding loadings in column three of Table 28, however the low
loadings in column one of Table 37 are larger in magnitude than their
corresponding loadings in column one of Table 28. This phenomena of
reduction and inflation of loadings in Table 37 may be thought of as
"dumping" and actually represents the first stages of the coalescing of
factors one and three. Inasmuch as all small loadings did not decrease
in the third iterative stage long reference structure matrix it may be
assumed that the long reference structure matrix determined by the second
iterative stage is the best long reference structure matrix of the set of
possible long reference structure matrices that might be determin2d for
(x = .20). That is to say, the third and all subsequent iterative
stages for (x = .20) will locate the termini of the reference vectors
beyond the ideal points defined by p. (Sée Figures 16, 17 and 18.)
Summary of Section III

In this section the simplified obliquimax was developed and explained
through the use of an illustrative example. A symmetric matrix of
direction numbers, S, was used in the computation of the solution matrices
at each iterative stage. The simplified obliquimax retained the metric of
the original factor solution throughout all iterative stages and it was
not until the final iterative stage solution had been obtained that the
metric was converted to that of unit length reference vectors, thereby

providing a traditional oblique solution.
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The essence of the simplified obliquimax is the use of the symmetric
matrix S and the retention of the metric of the original factor solution.
The equations presented in this section are summarized below for the
computation of the u—-th iterative stage.

1. Define D? as:

0% = diagonal [F'FI. (9]

2. Determine the orthonormal T from F using Kaiser's (1958) normal
varimax procedure.

3. Select some small value for x, say:
x = .10.
4., Define S as:
s = 7', . [35]

5. The long reference structure matrix for the y-th iterative stage
is defined as:

* - ' - ' - -2
F, FT(T'D T)1 (T'D T)Z...(T’D T)u.

Therefore:
F, = FTSY, [42]

6. The variance covariance matrix for the uy-th iterative stage
reference vectors is defined as:

* _ [} -~ [} - [ -X 'm -2 =X ) .
Y, = (z D" Ty,...(T'D T)Z (T'D T)1 I'D T)J (T'D T)2...(T’D T),3
1, = 8% [43]

7. The variance covariance matrix for the u-th iterative stage
primary vectors is defined as:

x »
zb = @'DTy.... @Dty @'ty @' 0°ry @Dy ... @'0%).
U 2 1 1 2 u

-2
= S u'o [44]

L x & x

/

To convert to a traditional oblique solution it is only necessary to

x X *
rescale F,, Y, and Z, to the metric of unit vectors.

8. To determine the unit referer.ce structure matrix define:

p? = diaganal (571 =diagonal. [¥,];

“ 1
* -
u FuDuI'
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9, To determine the unit primary pattern matrix define:

022 = diagonal [s'2u] = diagonal {ZZ];

_ pAntl
1 1

10. Using D;Z’ D_2, v* and ZZ the reference vector and primary
vector 1ntercorre¥ation matrices may be computed as:

_ 12U -1 _ =1 4 -1
Ty Duls Dul DuZYuDuZ’

g g T P

All solution matrices within the framework utilize the symmetric
matrix S. The definition of § eliminates the possibility of transforming
to singularity and the necessity of planar plots.

Summary

This paper ﬁaé arranged into three sectionsj the first section being
primarily background; the second section being primarily theoreticalj the
third section being application and theory.

In the first section one of Thurstone's methods of determining
oblique transformations was discussed within the context of his classical
box problem. This section was presen‘ed to provide a background and to
establish the terminology and methodology used in the subsequent sections.

In the second section of this paper certain theoretical aspects of
the general obliquimax were discussed to provide a basis for the
development and understanding of the simplified obliquimax. In this
section a cursory discussion of the general obliquimax was provided.
Total variance was defined with respect to the perpendicular projections
of n variable vectors onto r long reference vectors and with respect to
the perpendicular projections of r lLong primary vectors onto each other.
The equations of the general obliquimax were discussed within the

framework of variance and variance modification. This discussion

necessitated an algebraic comparison of the Thurstone type reference
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structure matrix and the Holzinger type primary pattern matrix. Finally
it was demonstrated algebraically that when the metric of the original
factor solution is retained in place of unit vectors the Holzinger
pattern matrix and the Thurstone structure matrix are identical.

In the third and final section of this paper the semi-subjective
simplified obliquimax transformation was developed and discussed within
the context of Thurstone's box problem. A constant, symmetric matrix of
direction numbers was discussed algebraically and geometrically. The
general obliquimax equations were modified and re-defined within the
metric of the original factor solution using exponential powers of the
symmetric matrix of direction numbers and an orthogonally transformed
version of the initial factor loading matrix. Finally the subjective
evaluation of ;he "simple structure' of a solution was discussed with
respect to the un-rescaled reference structure matrix. The discussion
was presented within the.context of the box problem and in numerous parts
of the section comparisons and contrasts were made with the Thurstonian
model for determining oblique transformation solutions.

Conelusion

The primary objectives of this paper were pedagogical. One objective
was to provide a reliable? semi-cubjective transformation procedure that
might be used without difficulty by beginning students in factor analysis.
A second objective was to clarify and extend the existing knowledge of
oblique transformations in general. A third objective was to provide a
brief but meaningéul explication of the general obliquimax. Implicit in
these first three objectives was the fourth objective whick was one of
presenting a paper that might be profitable for both the beginning student

and the factor analytic theoretician.
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To these ends the simplified obliquimax was developed having as its
basis the classic Harris and Kaiser (1964) theory of developing oblique
transformation solutions through the use of orthogonal transformation
matrices. Inasmuch as the Harris and Kaiser theory does encompass the
Thurstonian approach the ThursFonian method of determining oblique
transformations was used to providz background information and to explain
by analogy certain aspects of the simplified- obliquima.x.*

It may be concluded that the simplified obliquimax has fulfilled the
first three objectives of this paper. This paper has provided:

l. a reliable, semi-subjective transformation procedure for
beginning students in factor analysis;

2. a clarification and extension of the existing knowledge of
oblique transformations; :

3. a brief explication of the general obliquimax.

*I would like to acknowledge the assistance that I received in this
paper from J. Whitey. His discussions with me on the geometric aspects
of oblique solutions proved quite valuable in the overall development of
the total paper. :
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